Prebiotic RNA Synthesis by Montmorillonite Catalysis

نویسندگان

  • Sohan Jheeta
  • Prakash C. Joshi
چکیده

This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the "Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)" conference at the Open University, Milton Keynes, UK, 5-6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl- > Br- > I-. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalysis in prebiotic chemistry: application to the synthesis of RNA oligomers

The role of catalysis in prebiotic synthesis is illustrated using the montmorillonite clay catalyzed synthesis of RNA oligomers. Reaction of activated monomers of nucleotides in pH 8 aqueous solution containing Mg2þ in the presence of montmorillonite yields 6–14 mers. The reaction takes place at the clay interlayer. The catalyst controls the synthesis of RNA oligomers in that a limited number o...

متن کامل

Montmorillonite: An efficient, heterogeneous and green catalyst for organic synthesis

Reactions of organic molecules on Montmorillonite clay mineral have been investigated from various aspects. These include catalytic reactions for organic synthesis, chemical evolution, the mechanism of humus-formation, and environmental problems. Catalysis by clay minerals has attracted much interest recently, and many reports including the catalysis by synthetic or modified clays have been pub...

متن کامل

Taming Prebiotic Chemistry: The Role of Heterogeneous and Interfacial Catalysis in the Emergence of a Prebiotic Catalytic/Information Polymer System

Cellular life is based on interacting polymer networks that serve as catalysts, genetic information and structural molecules. The complexity of the DNA, RNA and protein biochemistry suggests that it must have been preceded by simpler systems. The RNA world hypothesis proposes RNA as the prime candidate for such a primal system. Even though this proposition has gained currency, its investigation...

متن کامل

Montmorillonite KSF as a very efficient heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles

Montmorillonite KSF has been used as an effective and non-toxic heterogeneous catalyst for one-pot synthesis of 5-substituted 1H-tetrazoles via [3+2] cycloaddition of sodium azide with a wide variety of nitriles. The reaction afforded high yields of the desired products in a short reaction time under mild reaction conditions. The catalyst can be recovered by simple filtration and reuse...

متن کامل

Montmorillonite KSF as a very efficient heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles

Montmorillonite KSF has been used as an effective and non-toxic heterogeneous catalyst for one-pot synthesis of 5-substituted 1H-tetrazoles via [3+2] cycloaddition of sodium azide with a wide variety of nitriles. The reaction afforded high yields of the desired products in a short reaction time under mild reaction conditions. The catalyst can be recovered by simple filtration and reuse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014